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PREFACE

Chemistry is so crucial to an understanding of medicine and biology, environmental science, 
and many areas of engineering and industrial processing that it has become a requirement 

for an increasing number of academic majors. Furthermore, chemical principles lie at the core of 
some of the key societal issues we face in the 21st century—dealing with climate change, finding 
new energy options, and supplying nutrition and curing disease on an ever more populated planet.

SETTING THE STANDARD FOR A CHEMISTRY TEXT
The ninth edition of Chemistry: The Molecular Nature of Matter and Change maintains its 
standard-setting position among general chemistry textbooks by evolving further to meet the 
needs of professor and student. The text still contains the most accurate molecular illustrations, 
consistent step-by-step worked problems, and an extensive collection of end-of-chapter problems. 
And changes throughout this edition make the text more readable and succinct, the artwork more 
teachable and modern, and the design more focused and inviting. The three hallmarks that have 
made this text a market leader are now demonstrated in its pages more clearly than ever.

Visualizing Chemical Models—Macroscopic to Molecular
Chemistry deals with observable changes caused by unobservable atomic-scale events, 
requiring an appreciation of a size gap of mind-boggling proportions. One of the text’s 
goals coincides with that of so many instructors: to help students visualize chemical events 
on the molecular scale. Thus, concepts are explained first at the macroscopic level and then 
from a molecular point of view, with pedagogic illustrations always placed next to the 
discussions to bring the point home for today’s visually oriented students.

MACROSCOPIC
VIEW

ATOMIC-SCALE
VIEW

O2–

O2

O2–

Mg2+

Mg2+

+ O2(g) 2MgO(s)2Mg(s)BALANCED
EQUATION

Mg Mg

Charles D. Winters/McGraw-Hill Education
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216   Chapter 5 • Gases and the Kinetic-Molecular Theory

as long as the same unit is used for both V1 and V2. We used L, but we could have used 
cm3 instead; however, both L and cm3 cannot be used. 
FOLLOW-UP PROBLEMS
5.2A A tank contains 651 L of compressed oxygen gas at a pressure of 122 atm. Assuming 
the temperature remains constant, what is the volume of the oxygen (in L) at 745 mmHg?
5.2B A sample of argon gas occupies 105 mL at 0.871 atm. If the volume of the gas is 
increased to 352 mL at constant temperature, what is the final pressure of the gas (in kPa)?
SOME SIMILAR PROBLEMS 5.24 and 5.25

multiply by
T2/T1

°C + 273.15 = K

V2 (L)

T1 and T2 (K)

T1 and T2 (°C)

V1 (L)

Road Map

SAMPLE PROBLEM 5.3   Applying the Volume-Temperature and Pressure-
Temperature Relationships

Problem A balloon is filled with 1.95 L of air at 25°C and then placed in a car sitting in 
the sun. What is the volume of the balloon when the temperature in the car reaches 90°C?
Plan We know the initial volume (V1) and the initial (T1) and final (T2) temperatures of 
the gas; we must find the final volume (V2). The pressure of the gas is fixed, since the 
balloon is subjected to atmospheric pressure, and n is fixed, since air cannot escape or 
enter the balloon. We convert both T values to kelvins, rearrange the ideal gas law, and 
solve for V2 (see the road map).
Solution Summarizing the gas variables:

V1 = 1.95 L  V2 = unknown
T1 = 25°C (convert to K)  T2 = 90°C (convert to K)
P and n remain constant

Converting T from °C to K:
 T1 (K) = 25°C + 273.15 = 298 K  T2 (K) = 90°C + 273.15 = 363 K

Rearranging the ideal gas law and solving for V2: at fixed n and P, we have

 P1V1

n1T1
=

 P2V2

n2T2
   or   

V1

T1
=

V2

T2

V2 = V1 × 
T2

T1
 = 1.95 L × 

363 K
298 K

 = 2.38 L

Check Let’s predict the change to check the math: because T2 > T1, we expect V2 > V1. 
Thus, the temperature ratio should be greater than 1 (T2 in the numerator). The T ratio 
is about 1.2 (363/298), so the V ratio should also be about 1.2 (2.4/2.0 ≈ 1.2).
FOLLOW-UP PROBLEMS
5.3A A steel tank used for fuel delivery is fitted with a safety valve that opens if the 
internal pressure exceeds 1.00×103 torr. The tank is filled with methane at 23°C and 
0.991 atm and placed in boiling water at 100.°C. What is the pressure in the heated 
tank? Will the safety valve open?
5.3B A sample of nitrogen occupies a volume of 32.5 L at 40°C. Assuming that the 
pressure remains constant, what temperature (in °C) will result in a decrease in the 
sample’s volume to 28.6 L?
SOME SIMILAR PROBLEMS 5.26–5.29

SAMPLE PROBLEM 5.4   Applying the Volume-Amount and Pressure-
Amount Relationships

Problem A scale model of a blimp rises when it is filled with helium to a volume of 
55.0 dm3. When 1.10 mol of He is added to the blimp, the volume is 26.2 dm3. How 
many more grams of He must be added to make it rise? Assume constant T and P.
Plan We are given the initial amount of helium (n1), the initial volume of the blimp 
(V1), and the volume needed for it to rise (V2), and we need the additional mass of 
helium to make it rise. So, we first need to find n2. We rearrange the ideal gas law to 
the appropriate form, solve for n2, subtract n1 to find the additional amount (nadd’l), and 
then convert moles to grams (see the road map).
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The simplest arrangement consistent with the mass data for carbon oxides I and 
II in our earlier example is that one atom of oxygen combines with one atom of carbon 
in compound I (carbon monoxide) and that two atoms of oxygen combine with one 
atom of carbon in compound II (carbon dioxide):

OCOOC

Carbon oxide I
(carbon monoxide)

Carbon oxide II
(carbon dioxide)

Let’s work through a sample problem that reviews the mass laws.

Problem The scenes below represent an atomic-scale view of a chemical reaction:

Which of the mass laws—mass conservation, definite composition, and/or multiple 
proportions—is (are) illustrated?
Plan From the depictions, we note the numbers, colors, and combinations of atoms 
(spheres) to see which mass laws pertain. If the numbers of each atom are the same before 
and after the reaction, the total mass did not change (mass conservation). If a compound 
forms that always has the same atom ratio, the elements are present in fixed parts by mass 
(definite composition). If the same elements form different compounds and the ratio of the 
atoms of one element that combine with one atom of the other element is a small whole 
number, the ratio of their masses is a small whole number as well (multiple proportions).
Solution There are seven purple and nine green atoms in each circle, so mass is conserved. 
The compound formed has one purple and two green atoms, so  it has definite composition. 
Only one compound forms, so the  law of multiple proportions does not pertain.
FOLLOW-UP PROBLEMS
2.3A The following scenes represent a chemical change. Which of the mass laws is 
(are) illustrated?

2.3B Which sample(s) best display(s) the fact that compounds of bromine (orange) and 
fluorine (yellow) exhibit the law of multiple proportions? Explain.

A B C

SOME SIMILAR PROBLEMS 2.14 and 2.15

SAMPLE PROBLEM 2.3 Visualizing the Mass Laws
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Thinking Logically  
to Solve Problems
The problem-solving approach, based on the 
four-step method widely accepted by experts in 
chemical education, is introduced in Chapter 1 
and employed consistently throughout the text. It 
encourages students to plan a logical approach 
to a problem, and only then proceed to solve it. 
Each sample problem includes a check, which 
fosters the habit of “thinking through” both the 
chemical and the quantitative reasonableness 
of  the answer. Finally, for practice and 
reinforcement, each sample problem is followed 
immediately by two similar follow-up problems. 
And Chemistry marries problem solving to 
visualizing models with molecular-scene 
problems, which appear not only in homework 
sets, as in other texts, but also in the running 
text, where they are worked out stepwise.
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Applying Ideas to the Real World
As the most practical science, chemistry should have a textbook that highlights its countless 
applications. Moreover, today’s students may enter emerging chemistry-related hybrid fields, 
like biomaterials science or planetary geochemistry, and the text they use should point out 
the relevance of chemical concepts to such related sciences. The Chemical Connections and 
Tools of the Laboratory boxed essays (which include problems for added relevance), the 
more pedagogic margin notes, and the many applications woven into the chapter content are 
up-to-date, student-friendly features that are directly related to the neighboring content.

Most water destined for human use comes from lakes, rivers, 
reservoirs, or groundwater. Present in this essential resource 

may be soluble toxic organic compounds and high concentrations 
of NO3

− and Fe3+, colloidal clay and microbes, and suspended de-
bris. Let’s see how water is treated to remove these dissolved, 
dispersed, and suspended particles.

Water Treatment Plants
Treating water involves several steps (Figure B13.1):

Step 1. Screening and settling. As water enters the facility, 
screens remove debris, and settling removes sand and other 
 particles.

Step 2. Coagulating. This step and the next two remove col-
loids. These particles have negative surfaces that repel each other. 
Added aluminum sulfate [cake alum; Al2(SO4)3] or iron(III) chlo-
ride (FeCl3), which supply Al3+ or Fe3+ ions that neutralize the 
charges, coagulates the particles through intermolecular forces.

Step 3. Flocculating and sedimenting. Mixing water and floc-
culating agents in large basins causes a fluffy floc to form. Added 
cationic polymers form long-chain bridges between floc particles, 
which grow bigger and flow into other basins, where they form a 
sediment and are removed. Some plants use dissolved air flotation 
(DAF) instead: bubbles forced through the water attach to the floc, 
and the floating mass is skimmed.

Step 4. Filtering. Various filters remove remaining particles. 
In slow sand filters, the water passes through sand and/or gravel of 
increasing particle size. In rapid sand filters, the sand is back-
washed with water, and the colloidal mass is removed. Membrane 
filters (not shown) with pore sizes of 0.1–10 μm are thin tubes 
bundled together inside a vessel. The water is forced into these 
tubes, and the colloid-free filtrate is collected from a large, central 
tube. Filtration is very effective at removing microorganisms re-
sistant to disinfectants.

Step 5. Disinfecting. Water sources often contain harmful mi-
croorganisms that are killed by one of three agents:
∙ Chlorine, as aqueous bleach (ClO−) or Cl2, is most common, 

but carcinogenic chlorinated organic compounds can form.
∙ UV light emitted by high-intensity fluorescent tubes disinfects 

by disrupting microorganisms’ DNA.
∙ Ozone (O3) gas is a powerful oxidizing agent.
Sodium fluoride (NaF) to prevent tooth decay and phosphate salts 
to prevent leaching of lead from pipes may then be added.

Step 6 (not shown). Adsorbing onto granular activated car-
bon (GAC). Petroleum and other organic contaminants are re-
moved by adsorption. GAC is a highly porous agent formed by 
“activating” wood, coal, or coconut shells with steam: 1 kg of 
GAC has a surface area of 275 acres!

Water Softening via Ion Exchange
Water with large amounts of 2+ ions, such as Ca2+ and Mg2+, is 
called hard water. Combined with fatty-acid anions in soap, these 
cations form solid deposits on clothes, washing machines, and 
sinks:

Ca2+ (aq) + 2C17H35COONa(aq) ⟶
 soap

(C17H35COO)2Ca(s) + 2Na+(aq)
 insoluble deposit
When a large amount of HCO3

− is present, the cations form scale, 
a carbonate deposit in boilers and hot-water pipes that interferes 
with the transfer of heat:

Ca2+ (aq) + 2HCO3
−(aq) ⟶ CaCO3(s) + CO2(g) + H2O(l)

Removing hard-water cations, called water softening, is done by 
exchanging Na+ ions for Ca2+ and Mg2+ ions. A home system 
for ion exchange contains an insoluble polymer resin with bonded 

573

CHEMICAL CONNECTIONS TO 
ENVIRONMENTAL ENGINEERING

Solutions and Colloids in  
Water Purification

Coagulating 
Al2(SO4)3 
and polymers 
added

Cl2

Settling tanks

Valve

Water intake

Screening/
settling

Filtering

Flocculating/
sedimenting

Chlorine added

Disinfecting5

4

32

1

Storage
tank

To users

Figure B13.1 The typical steps in municipal water treatment.

(continued)
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Wastewater Treatment
Wastewater, used domestic or industrial water, is treated in 
 several ways before being returned to a natural source:
∙ In primary treatment, the water enters a settling basin to re-

move particles.
∙ In biological treatment, bacteria metabolize organic com-

pounds and are then removed by settling.
∙ In advanced treatment, a process is tailored to remove a spe-

cific pollutant. For example, ammonia, which causes excessive 
growth of plants and algae, is removed in two steps:
1.  Nitrification. Certain bacteria oxidize ammonia (electron 

donor) with O2 (electron acceptor) to form nitrate ion:
NH4

+ + 2O2 ⟶ NO−
3 + 2H+ + H2O

2.  Denitrification. Other bacteria oxidize an added compound, 
like methanol (CH3OH), using the NO3

−:
5CH3OH + 6NO −

3 ⟶ 3N2 + 5CO2 + 7H2O + 6OH−

Thus, the process converts NH3 in wastewater to N2, which is 
released to the atmosphere.

Problems
B13.1 Briefly answer each of the following: 
(a) Why is cake alum [Al2(SO4)3] added during water purification?
(b) Why is water that contains large amounts of Ca2+ and Mg2+ 
difficult to use for cleaning?
(c) What is the meaning of reverse in reverse osmosis?
(d) Why might a water treatment plant use ozone as a disinfectant 
instead of chlorine?
(e) How does passing a saturated NaCl solution through a “spent” 
ion-exchange resin regenerate the resin?
B13.2 Wastewater discharged into a stream by a sugar refinery 
contains 3.55 g of sucrose (C12H22O11) per liter. A government-
sponsored study is testing the feasibility of removing the sugar 
by reverse osmosis. What pressure must be applied to the 
 wastewater solution at 20.°C to produce pure water?

anionic groups, such as SO3
− or COO−, and Na+ ions for 

charge balance (Figure B13.2). The hard-water cations displace 
the Na+ ions and bind to the anionic groups. When all resin sites 
are occupied, the resin is regenerated with concentrated Na+ solu-
tion that exchanges Na+ ions for bound Ca2+ and Mg2+.

Membrane Processes and Reverse Osmosis
Membranes with 0.0001–0.01 μm pores can remove unwanted 
ions from water. Recall that solutions of different concentrations 
separated by a semipermeable membrane create osmotic pressure. 
In reverse osmosis, a pressure greater than the osmotic pressure 
is applied to the more concentrated solution to force water back 
through the membrane and filter out ions. In homes, toxic heavy-
metal ions, such as Pb2+, Cd2+, and Hg2+, are removed this way. 
On a large scale, reverse osmosis is used for desalination, which 
can convert seawater (40,000 ppm of ions) to drinking water 
(400 ppm) (Figure B13.3). There are over 18,000 desalination 
plants worldwide, providing water for 300 million people.

574

Figure B13.2 Ion exchange to remove hard-water cations.
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Figure B13.3 Reverse osmosis to remove ions. A, Part of a reverse-osmosis permeator. B, Each permeator contains a bundle of hollow fibers 
of semipermeable membrane. C, Pumping seawater at high pressure removes ions, and purer water enters the fibers and is collected.
Source: (A) Robert Essel NYC/Corbis/Getty Images
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Resonance: Delocalized Electron-Pair Bonding
We often find that, for a molecule or polyatomic ion with double bonds next to single 
bonds, we can write more than one Lewis structure. Which, if any, is correct?

The Need for Resonance Structures To understand this issue, consider ozone (O3), 
an air pollutant at ground level but an absorber of harmful ultraviolet (UV) radiation 
in the stratosphere. Since oxygen is in Group 6A(16), there are [3 × O(6e−)] = 18 
valence e− in the molecule. Four electrons are used in the formation of two single 
bonds, leaving 18e− − 4e− = 14e −, enough electrons to give the surrounding O atoms 
(designated A and C for clarity) an octet of electrons, but not enough to complete the 
octet of the central O atom (designated B). Applying Step 5 gives two Lewis structures:

O
OO

A C

B
O

O O
A C

B

III

O
O O

A C

B
O

O
A C

BO

In structure I, a lone pair on oxygen A is changed to another bonding pair so that 
oxygen B has a double bond to oxygen A and a single bond to oxygen C. In structure II, 
the single and double bonds are reversed as a lone pair on oxygen C is changed to a 
bonding pair. You can rotate I to get II, so these are not different types of ozone 
molecules but different Lewis structures for the same molecule.

Comparing the bond properties in Lewis structures I and II with the properties 
of the actual bonds in the molecule results in an interesting observation:

Lewis structures I and II: one OO double bond with bond length of 121 pm
 one OO single bond with bond length of 148 pm

 O3 molecule:  two oxygen-oxygen bonds that are identical in length 
(128 pm) and energy

We explain this discrepancy as follows:

∙ Each bond in O3 has properties between those of an OO bond and an OO 
bond, making it something like a “one-and-a-half” bond. 

∙ The molecule is shown more correctly as two Lewis structures, called resonance 
structures (or resonance forms), with a two-headed resonance arrow (⟷) 
between them.

∙ Resonance structures have the same relative placement of atoms but different loca-
tions of bonding and lone electron pairs. You can convert one resonance form to 
another by moving lone pairs to bonding positions, and vice versa:

O
OO

A C

B
O

O O
A C

B

III

∙ Resonance structures are not real bonding depictions: O3 does not change back 
and forth quickly from structure I to structure II. The actual molecule is a  resonance 
hybrid, an average of the resonance structures. ‹

Electron Delocalization Our need for more than one Lewis structure to depict O3 is 
due to electron-pair delocalization. In a single, double, or triple bond, each electron 
pair is localized between the bonded atoms. In a resonance hybrid, two of the electron 
pairs (one bonding and one lone pair) are delocalized: their density is “spread” over a 
few adjacent atoms. (This delocalization involves just a few e− pairs, so it is much less 
extensive than the electron delocalization in metals that we considered in Section 9.6.)

FOLLOW-UP PROBLEMS
10.3A Write Lewis structures for (a) CO (the only common molecule in which C has 
three bonds); (b) HCN; (c) CO2.
10.3B Write Lewis structures for (a) NO+; (b) H2CO; (c) N2H2.
SOME SIMILAR PROBLEMS 10.5(c), 10.6(b), 10.7(b), and 10.7(c)

A Purple Mule, Not a Blue Horse 
and a Red Donkey

A mule is a genetic mix, a hybrid, of a 
horse and a donkey; it is not a horse 
one instant and a donkey the next. 
 Similarly, the color purple is a mix of red 
and blue, not red one instant and blue 
the next. In the same sense, a reso-
nance hybrid is one molecular species, 
not one resonance form this instant and 
another resonance form the next. The 
problem is that we cannot depict the 
actual species, the hybrid, accurately 
with a single Lewis structure.

Blue horse Red donkey

Purple mule
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TOOLS OF THE 
LABORATORY

653

In addition to mass spectrometry (Chapter 2) and infrared (IR) 
spectroscopy (Chapter 9), one of the most useful tools for ana-

lyzing organic and biochemical structures is nuclear magnetic 
resonance (NMR) spectroscopy, which measures the molecular 
environments of certain nuclei in a molecule.

Like electrons, several types of nuclei, such as 13C, 19F, 
31P, and 1H, act as if they spin in either of two directions, each 
of which creates a tiny magnetic field. In this discussion, we 
focus primarily on 1H-NMR spectroscopy, which measures 
changes in the nuclei of the most common isotope of hydrogen. 
Oriented randomly, the magnetic fields of all the 1H nuclei in a 
sample of compound, when placed in a strong external mag-
netic field (B0), become aligned either with the external field 
(parallel) or against it (antiparallel). Most nuclei adopt the par-
allel orientation, which is slightly lower in energy. The energy 
difference (ΔE) between the two energy states (spin states) lies 
in the radio-frequency (rf) region of the electromagnetic spec-
trum (Figure B15.1).

When an 1H (blue arrow) in the lower energy (parallel) spin 
state absorbs a photon in the radio-frequency region with an en-
ergy equal to ΔE, it “flips,” in a process called resonance, to the 
higher energy (antiparallel) spin state. The system then re-emits 
that energy, which is detected by the rf receiver of the 1H-NMR 
spectrometer. The ΔE between the two states depends on the ac-
tual magnetic field acting on each 1H nucleus, which is affected by 
the tiny magnetic fields of the electrons of atoms adjacent to that 
nucleus. Thus, the ΔE required for resonance of each 1H nucleus 
depends on its specific molecular environment—the C atoms, 
electronegative atoms, multiple bonds, and aromatic rings around 
it. 1H nuclei in different molecular environments produce different 
peaks in the 1H-NMR spectrum.

An 1H-NMR spectrum, which is unique for each compound, 
is a series of peaks that represents the resonance as a function of 
the changing magnetic field. The chemical shift of the 1H nuclei 
in a given environment is where a peak appears. Chemical shifts 
are shown relative to that of an added standard, tetramethylsi-
lane [(CH3)4Si, or TMS]. TMS has 12 1H nuclei bonded to four 
C atoms that are bonded to one Si atom in a tetrahedral arrange-
ment, so all 12 are in identical environments and produce only 
one peak.

Figure B15.2 shows the 1H-NMR spectrum of acetone. The six 
1H nuclei of acetone have identical environments: all six are bonded 
to two C atoms that are each bonded to the C atom involved in the 
CO bond. So one peak is produced, but at a different position from 
the TMS peak. The spectrum of dimethoxymethane in Figure B15.3 
shows two peaks in addition to the TMS peak, since the 1H nuclei 
have two different evironments. The taller peak is due to the six 1H 
nuclei in the two CH3 groups, and the shorter peak is due to the two 
1H nuclei in the CH2 group. The area under each peak (given as  
a number of chart-paper grid spaces) is proportional to the number  
of 1H nuclei in a given environment. Note that the area ratio is 
20.3/6.8 ≈ 3/1, the same as the ratio of six nuclei in the CH3 groups 
to two in the CH2 group. Thus, by analyzing the chemical shifts and 
peak areas, the chemist learns the type and number of hydrogen  
atoms in the compound.

Nuclear Magnetic Resonance  
(NMR) Spectroscopy

ΔE

Magnetic
field (B0)

Random nuclear spins 
are of equal energy.

Radiation (hν)

(antiparallel)

(parallel)

Aligned spins A spin “flip” results
from absorption of a 
photon with energy 
equal to ΔE (radio- 
frequency region).

Er f  = ΔE

Figure B15.1 The basis of 1H spin resonance.
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Figure B15.2 The 1H-NMR spectrum of acetone. 
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Figure B15.3 The 1H-NMR spectrum of dimethoxymethane.(continued)
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Reinforcing through Review and Practice
A favorite feature, the section summaries that conclude 
every section restate the major ideas concisely and 
immediately (rather than postponing such review until the 
end of the chapter).
 A rich catalog of study aids ends each chapter to 
help students review the content:

∙ Learning Objectives, with section and/or sample prob-
lem numbers, focus on the concepts to understand and 
the skills to master.

∙ Key Terms, boldfaced and defined within the chapter, are listed here by 
section (with page numbers), as well as being defined in the Glossary.

∙ Key Equations and Relationships are highlighted and numbered within the 
chapter and listed here with page numbers.

∙ Brief Solutions to Follow-up Problems triple the number of worked prob-
lems by providing multistep calculations at the end of the chapter, rather 
than just numerical answers at the back of the book.

372   Chapter 9 • Models of Chemical Bonding

The Lewis symbol provides information about an element’s bonding behavior:

∙ For a metal, the total number of dots is the number of electrons an atom loses to 
form a cation; for example, Mg loses two to form Mg2+.

∙ For a nonmetal, the number of unpaired dots equals either the number of electrons 
an atom gains to form an anion (F gains one to form F−) or the number it shares 
to form covalent bonds.

The Lewis symbol for carbon illustrates the last point. Rather than one pair of dots 
and two unpaired dots, as its electron configuration seems to call for ([He] 2s22p2), 
carbon has four unpaired dots because it forms four bonds. Larger nonmetals can form 
as many bonds as the number of dots in their Lewis symbol (Chapter 10).

In his pioneering studies, Lewis generalized much of bonding behavior into a 
relatively simple rule:

∙ Octet rule: when atoms bond, they lose, gain, or share electrons to attain a filled-
outer level of eight electrons (or two, for H and Li).

The octet rule holds for nearly all of the compounds of Period 2 elements and a large 
number of others as well.

Summary of Section 9.1
› Nearly all naturally occurring substances consist of atoms or ions bonded to others. Chemical 

bonding allows atoms to lower their energy.
› Ionic bonding occurs when metal atoms transfer electrons to nonmetal atoms, and the 

resulting ions attract each other and form an ionic solid.
› Covalent bonding is most common between nonmetal atoms and usually results in individual 

molecules. Bonded atoms share one or more pairs of electrons that are localized between them.
› Metallic bonding occurs when many metal atoms pool their valence electrons into a 

delocalized electron “sea” that holds all the atoms in the sample together.
› The Lewis electron-dot symbol of a main-group atom shows valence electrons as dots 

surrounding the element symbol.
› The octet rule says that, when bonding, many atoms lose, gain, or share electrons to attain a 

filled outer level of eight (or two) electrons.

 9.2 THE IONIC BONDING MODEL
The central idea of the ionic bonding model is the transfer of electrons from metal atoms 
to nonmetal atoms to form ions that attract each other and form a solid compound. In 
most cases, for the main groups, the ion that forms has a filled outer level of either two 
or eight electrons (octet rule), the number in the nearest noble gas. In other words, a metal 
will lose the number of electrons needed to achieve the configuration of the noble gas 
that precedes it in the periodic table, whereas a nonmetal will gain the number of electrons 
needed to achieve the configuration of the noble gas at the end of its period.

The transfer of an electron from a lithium atom to a fluorine atom is depicted 
in three ways in Figure 9.5. In each, Li loses its single outer electron and is left with a 

›

Li  22s1 22s22p5 Li+  2 F–  22s22p6

2p2s

Li +  F

+  F

2p2s
Li+

2p2s

+  

+  

F–

2p2s

Electron configurations

Orbital diagrams

Lewis electron-dot symbols Li    +     F                         Li+    +     F
–

1s1s1s

1s 1s 1s 1s

1s

Figure 9.5 Three ways to depict elec-
tron transfer in the formation of Li+ and 
F–. The electron being transferred is 
shown in red.
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Summary of Section 13.7
› Particles in a colloid are smaller than those in a suspension and larger than those in a solution.
› Colloids are classified by the physical states of the dispersed and dispersing substances and 

involve many combinations of gas, liquid, and/or solid.
› Colloids have extremely large surface areas, scatter incoming light (Tyndall effect), and exhibit 

random (Brownian) motion.
› Colloidal particles in water are stabilized by charged surfaces that keep them dispersed, but 

they can be coagulated by heating or by the addition of ions.
› Solution behavior and colloid chemistry are applied to water treatment and purification.

›

Understand These Concepts
 1. The quantitative meaning of solubility (§13.1)
 2. The major types of intermolecular forces in solution and 

their relative strengths (§13.1)
 3. How the like-dissolves-like rule depends on intermolecular 

forces (§13.1)
 4. Why gases have relatively low solubilities in water (§13.1)
 5. General characteristics of solutions formed by various com-

binations of gases, liquids, and solids (§13.1)
 6. How intermolecular forces stabilize the structures of pro-

teins, the cell membrane, and DNA (§13.2)
 7. The enthalpy components of a solution cycle and their effect 

on ΔHsoln (§13.3)
 8. The dependence of ΔHhydr on ionic charge density and the 

factors that determine whether ionic solution processes are 
exothermic or endothermic (§13.3)

 9. The meaning of entropy and how the balance between the 
change in enthalpy and the change in entropy governs the 
solution process (§13.3)

 10. The distinctions among saturated, unsaturated, and supersat-
urated solutions, and the equilibrium nature of a saturated 
solution (§13.4)

 11. The relation between temperature and the solubility of solids 
(§13.4)

 12. Why the solubility of gases in water decreases with a rise in 
temperature (§13.4)

 13. The effect of gas pressure on solubility and its quantitative 
expression as Henry’s law (§13.4)

 14. The meaning of molarity, molality, mole fraction, and parts 
by mass or by volume of a solution, and how to convert 
among them (§13.5)

 15. The distinction between electrolytes and nonelectrolytes in 
solution (§13.6)

 16. The four colligative properties and their dependence on 
number of dissolved particles (§13.6)

 17. Ideal solutions and the importance of Raoult’s law (§13.6)
 18. How the phase diagram of a solution differs from that of the 

pure solvent (§13.6)
 19. Why the vapor over a solution of a volatile nonelectrolyte is 

richer in the more volatile component (§13.6)
 20. Why strong electrolyte solutions are not ideal and the mean-

ings of the van’t Hoff factor and ionic atmosphere (§13.6)
 21. How particle size distinguishes suspensions, colloids, and 

solutions (§13.7)
 22. How colloidal behavior is demonstrated by the Tyndall 

 effect and Brownian motion (§13.7)
Master These Skills
 1. Predicting relative solubilities from intermolecular forces 

(SP 13.1)
 2. Calculating the heat of solution for an ionic compound 

(SP 13.2)
 3. Using Henry’s law to calculate the solubility of a gas (SP 13.3)
 4. Expressing concentration in terms of molality, parts by 

mass, parts by volume, and mole fraction (SPs 13.4, 13.5)
 5. Interconverting among the various terms for expressing con-

centration (SP 13.6)
 6. Using Raoult’s law to calculate the vapor pressure lowering 

of a solution (SP 13.7)
 7. Determining boiling and freezing points of a solution (SP 13.8)
 8. Using a colligative property to calculate the molar mass of 

a solute (SP 13.9)
 9. Calculating the composition of vapor over a solution of 

 volatile nonelectrolyte (§13.6)
 10. Calculating the van’t Hoff factor (i) from the magnitude of 

a colligative property (§13.6)
 11. Using a depiction to determine colligative properties (SP 13.10)
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alloy (540)
amino acid (541)
boiling point elevation  

(ΔTb) (562)
charge density (547)
colligative property (560)
colloid (571)
desalination (574)

dipole–induced dipole  
force (537)

double helix (545)
entropy (S) (550)
fractional distillation (567)
freezing point depression 

(ΔTf) (563)
hard water (573)

immiscible (536)
ion exchange (573)
ionic atmosphere (568)
ion–induced dipole force (536)
like-dissolves-like rule (536)
lipid bilayer (544)
mass percent [% (w/w)] (557)
miscible (536)

heat (enthalpy) of hydration 
(ΔHhydr) (547)

heat (enthalpy) of solution 
(ΔHsoln) (546)

Henry’s law (554)
hydration (547)
hydration shell (536)
ideal solution (561)

Key Terms Page numbers appear in parentheses.
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molality (m) (556)
mole fraction (X) (557)
mononucleotide (545)
nonelectrolyte (560)
nucleic acid (544)
osmosis (565)
osmotic pressure (Π) (565)

protein (541)
Raoult’s law (561)
reverse osmosis (574)
saturated solution (552)
semipermeable membrane (565)
soap (543)
solubility (S) (536)

unsaturated solution (552)
vapor pressure lowering  

(ΔP) (561)
volume percent [% (v/v)] (557)
wastewater (574)
water softening (573)
weak electrolyte (560)

solute (535)
solvation (547)
solvent (535)
strong electrolyte (560)
supersaturated solution (552)
suspension (571)
Tyndall effect (572)

13.1 Dividing the general heat of solution into component 
 enthalpies (546):

ΔHsoln = ΔHsolute + ΔHsolvent + ΔHmix

13.2 Dividing the heat of solution of an ionic compound in water 
into component enthalpies (548):

ΔHsoln = ΔHlattice + ΔHhydr of the ions

13.3 Relating gas solubility to its partial pressure (Henry’s 
law) (554):

Sgas = kH × Pgas

13.4 Defining concentration in terms of molarity (555):

Molarity (M) =
amount (mol) of solute
volume (L) of solution

13.5 Defining concentration in terms of molality (556):

Molality (m) =
amount (mol) of solute

mass (kg) of solvent

13.6 Defining concentration in terms of mass percent (557):

Mass percent [% (w/w)] =
mass of solute

mass of solution
× 100

13.7 Defining concentration in terms of volume percent (557):

Volume percent [% (v/v)] =
volume of solute

volume of solution
× 100

13.8 Defining concentration in terms of mole fraction (557):
Mole fraction (X)

=
amount (mol) of solute

amount (mol) of solute + amount (mol) of solvent
13.9 Expressing the relationship between the vapor pressure of 
solvent above a solution and its mole fraction in the solution 
(Raoult’s law) (561):

Psolvent = Xsolvent × P°solvent

13.10 Calculating the vapor pressure lowering due to solute (561):
ΔP = Xsolute × P°solvent

13.11 Calculating the boiling point elevation of a solution (562):
ΔTb = Kbm

13.12 Calculating the freezing point depression of a solution (564):
ΔTf = Kfm

13.13 Calculating the osmotic pressure of a solution (565):

Π =
nsolute

Vsoln
 RT = MRT

Page numbers appear in parentheses.Key Equations and Relationships

13.1A (a) 1-Butanol has one OH group/molecule, whereas 
1,4-butanediol has two OH groups/molecule. 1,4-Butanediol 
is more soluble in water because it can form more H bonds.
(b) Chloroform is more soluble in water because of dipole-
dipole forces between the polar CHCl3 molecules and water. 
The forces between nonpolar CCl4 molecules and water are 
weaker dipole–induced dipole forces, which do not effectively 
replace H bonds between water molecules.

13.1B (a) Chloroform dissolves more chloromethane due to 
similar dipole-dipole forces between the polar molecules of 
these two substances. CH3Cl molecules do not exhibit H 
 bonding and, so, do not effectively replace H bonds between 
methanol molecules.
(b) Hexane dissolves more pentanol due to dispersion forces 
between the hydrocarbon chains in each molecule.

13.2A From Equation 13.2, we have
ΔHsoln of KNO3 = ΔHlattice of KNO3

 + (ΔHhydr of K+ + ΔHhydr of NO3
−)

34.89 kJ/mol = 685 kJ/mol + (ΔHhydr of K+ + ΔHhydr of NO3
−)

ΔHhydr of K+ + ΔHhydr of NO3
− = 34.89 kJ/mol − 685 kJ/mol

 = −650. kJ/mol

13.2B Due to its smaller size, Na+ should have a greater charge 
density and thus a larger ΔHhydr than CN–. From Equation 13.2, 
we have
ΔHsoln of NaCN = ΔHlattice of NaCN

+ (ΔHhydr of Na+ + ΔHhydr of CN−)
1.21 kJ/mol = 766 kJ/mol + (−410. kJ/mol + ΔHhydr of CN−)
ΔHhydr of CN− = 1.21 kJ/mol − 766 kJ/mol + 410. kJ/mol
 = −355 kJ/mol
13.3A The partial pressure of N2 in air is the volume percent 
 divided by 100 times the total pressure (Dalton’s law, Section 5.4): 
PN2 = 0.78 × 1 atm = 0.78 atm.
 Sgas = kH × Pgas

 SN2
 = (7×10−4 mol/L·atm)(0.78 atm)

 = 5×10−4 mol/L

13.3B In a mixture of gases, the volume percent of a gas divided 
by 100 times the total pressure equals the gas’s partial pressure 
(Dalton’s law, Section 5.4): 
Pgas = 0.40 × 1.2 atm = 0.48 atm.

kH =
Sgas

Pgas
=

1.2×10−2 mol/L
0.48 atm

= 2.5×10−2 mol/L·atm

BRIEF SOLUTIONS TO FOLLOW-UP PROBLEMS
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xxvi   Preface

Finally, an exceptionally large 
number of qualitative, quantitative, 
and molecular-scene problems end 
each chapter. Four types of problems 
are presented—three by chapter 
section, with comprehensive 
problems following:

∙ Concept Review Questions test 
qualitative understanding of key 
ideas.

∙ Skill-Building Exercises are 
grouped in similar pairs, with one 
of each pair answered in the back 
of the book. A group of similar 
exercises may begin with explicit 
steps and increase in difficulty, 
gradually weaning the student from 
the need for multistep directions.

∙ Problems in Context apply the 
skills learned in the skill-building 
exercises to interesting scenarios, 
including realistic examples dealing 
with industry, medicine, and the 
environment.

∙ Comprehensive Problems, mostly 
based on realistic applications, are 
more challenging and rely on mate-
rial from any section of the current 
chapter or any previous chapter.
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(b) C: three electron groups; trigonal planar shape; the double 
bond  compresses each ClCCl angle to <120°.

Cl

ClCl

Cl

C C

(c) Cl: four electron groups; tetrahedral shape; bond angles 
~109.5°. O (central): four electron groups, two of which are lone 
pairs; bent (V-shaped); ClOCl bond angle <109.5°.

O

Cl

O

O

O O

O

O

Cl

10.9A (a) The CH and CCl polar bonds reinforce each 
other, with the molecular polarity pointing between the Cl atoms.

Cl

C Cl

H

H

(b) Four of the polar IF bonds balance each other, but the fifth 
IF bond is not balanced by the polar OI bond. Since the  
IF bond is more polar (ΔEN = 1.5) than the OI bond  
(ΔEN = 1.0), the molecular polarity points toward the F atom.

I

O

F

F

F

F

F

(c) Four of the IF bonds balance each other, but the fifth IF bond 
is not balanced. The molecular polarity points toward the F atom.

I
F

F

F

F

F

10.9B (a) The four polar XeF bonds balance each other: 
 nonpolar molecule.

Xe
F

F

F

F

(b) Two of the ClF bonds balance each other, but the third  
ClF bond is not balanced. The molecular polarity points toward  
the F atom.

Cl

F

F

F

(c) The two axial SF bonds balance each other, but the two 
equatorial SF bonds (ΔEN = 1.5) are not balanced by the dou-
ble bond between S and O (ΔEN = 1.0). Since the SF bonds are 
more polar, the molecular polarity points toward the F atoms.

S

F

O

F
F

F

Problems with colored numbers are answered in Appendix E and 
worked in detail in the Student Solutions Manual. Problem sections 
match those in the text and give the numbers of relevant sample 
problems. Most offer Concept Review Questions, Skill-Building Exer-
cises (grouped in pairs covering the same concept), and Problems in 
Context. The Comprehensive Problems are based on material from 
any section or previous chapter.

Depicting Molecules and Ions with Lewis Structures
(Sample Problems 10.1 to 10.5)

Concept Review Questions
10.1 Which of these atoms cannot serve as a central atom in a 
Lewis structure: (a) O; (b) He; (c) F; (d) H; (e) P? Explain. 
10.2 When is a resonance hybrid needed to adequately depict the 
bonding in a molecule? Using NO2 as an example, explain how a 
resonance hybrid is consistent with the actual bond length, bond 
strength, and bond order.
10.3 In which of these structures does X obey the octet rule? 

X

(a) (b) (c) (d) (e) (f) (g) (h)

X XX X XX X
2−

10.4 What is required for an atom to expand its valence shell? 
Which of the following atoms can expand its valence shell: F, S, 
H, Al, Se, Cl?

Skill-Building Exercises (grouped in similar pairs)
10.5 Draw a Lewis structure for (a) SiF4; (b) SeCl2; (c) COF2  
(C is the central atom). 

10.6 Draw a Lewis structure for (a) PH4
+; (b) C2F4; (c) SbH3.

10.7 Draw a Lewis structure for (a) PF3; (b) H2CO3 (both H atoms 
are attached to O atoms); (c) CS2. 

10.8 Draw a Lewis structure for (a) CH4S; (b) S2Cl2; (c) CHCl3.

10.9 Draw Lewis structures of all the important resonance forms 
of (a) NO2

+; (b) NO2F (N is central). 

10.10 Draw Lewis structures of all the important resonance forms 
of (a) HNO3 (HONO2); (b) HAsO4

2− (HOAsO3
2−).

10.11 Draw Lewis structures of all the important resonance forms 
of (a) N3

−; (b) NO2
−. 

PROBLEMS
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ble bond between S and O (ΔEN = 1.0). Since the SF bonds are 
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Problems with colored numbers are answered in Appendix E and 
worked in detail in the Student Solutions Manual. Problem sections 
match those in the text and give the numbers of relevant sample 
problems. Most offer Concept Review Questions, Skill-Building Exer-
cises (grouped in pairs covering the same concept), and Problems in 
Context. The Comprehensive Problems are based on material from 
any section or previous chapter.

Depicting Molecules and Ions with Lewis Structures
(Sample Problems 10.1 to 10.5)

Concept Review Questions
10.1 Which of these atoms cannot serve as a central atom in a 
Lewis structure: (a) O; (b) He; (c) F; (d) H; (e) P? Explain. 
10.2 When is a resonance hybrid needed to adequately depict the 
bonding in a molecule? Using NO2 as an example, explain how a 
resonance hybrid is consistent with the actual bond length, bond 
strength, and bond order.
10.3 In which of these structures does X obey the octet rule? 

X

(a) (b) (c) (d) (e) (f) (g) (h)

X XX X XX X
2−

10.4 What is required for an atom to expand its valence shell? 
Which of the following atoms can expand its valence shell: F, S, 
H, Al, Se, Cl?

Skill-Building Exercises (grouped in similar pairs)
10.5 Draw a Lewis structure for (a) SiF4; (b) SeCl2; (c) COF2  
(C is the central atom). 

10.6 Draw a Lewis structure for (a) PH4
+; (b) C2F4; (c) SbH3.

10.7 Draw a Lewis structure for (a) PF3; (b) H2CO3 (both H atoms 
are attached to O atoms); (c) CS2. 

10.8 Draw a Lewis structure for (a) CH4S; (b) S2Cl2; (c) CHCl3.

10.9 Draw Lewis structures of all the important resonance forms 
of (a) NO2

+; (b) NO2F (N is central). 

10.10 Draw Lewis structures of all the important resonance forms 
of (a) HNO3 (HONO2); (b) HAsO4

2− (HOAsO3
2−).

10.11 Draw Lewis structures of all the important resonance forms 
of (a) N3

−; (b) NO2
−. 

PROBLEMS
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Valence-Shell Electron-Pair Repulsion (VSEPR) Theory
(Sample Problems 10.6 to 10.8)

Concept Review Questions
10.27 If you know the formula of a molecule or an ion, what is the 
first step in predicting its shape?

10.28 In what situation is the name of the molecular shape the 
same as the name of the electron-group arrangement? 

10.29 Which of the following numbers of electron groups can 
give rise to a bent (V-shaped) molecule: two, three, four, five, six? 
Draw an example for each case, showing the shape classification 
(AXmEn) and the ideal bond angle.

10.30 Name all the molecular shapes that have a tetrahedral 
 electron-group arrangement. 

10.31 Consider the following molecular shapes. (a) Which has 
the most electron pairs (both bonding and lone pairs) around 
the central atom? (b) Which has the most lone pairs around the 
central atom? (c) Do any have only bonding pairs around the 
central atom?

A B C D

10.32 Use wedge-bond perspective drawings (if necessary) to 
sketch the atom positions in a general molecule of formula (not 
shape class) AXn that has each of the following shapes: 
(a) V-shaped (b) trigonal planar (c) trigonal bipyramidal
(d) T-shaped (e) trigonal pyramidal (f) square pyramidal

10.33 What would you expect to be the electron-group arrange-
ment around atom A in each of the following cases? For each ar-
rangement, give the ideal bond angle and the direction of any 
expected deviation:

A

A XX X

AX

X

X

(a) (b) (c) A XX(d)

AX(e)
X

X
(f)X

XX

A

X

X

Skill-Building Exercises (grouped in similar pairs)
10.34 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following: 
(a) O3  (b) H3O+  (c) NF3

10.35 Determine the electron-group arrangement, molecular shape, 
and ideal bond angle(s) for each of the following:
(a) SO4

2−  (b) NO2
−  (c) PH3

10.36 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following: 
(a) CO3

2−  (b) SO2  (c) CF4

10.37 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following:
(a) SO3  (b) N2O (N is central)  (c) CH2Cl2

10.12 Draw Lewis structures of all the important resonance forms 
of (a) HCO2

− (H is attached to C); (b) HBrO4 (HOBrO3).

10.13 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) IF5; (b) AlH4

−. 

10.14 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) OCS; (b) NO.

10.15 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) CN−; (b) ClO−. 

10.16 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) ClF2

+; (b) ClNO.

10.17 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) BrO3

−; (b) SO3
2−. 

10.18 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) AsO4

3−; (b) ClO2
−.

10.19 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BH3  (b) AsF4

−  (c) SeCl4

10.20 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) PF6

−  (b) ClO3  (c) H3PO3 (one PH bond)

10.21 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BrF3  (b) ICl2

−  (c) BeF2

10.22 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) O3

−  (b) XeF2  (c) SbF4
−

Problems in Context
10.23 Molten beryllium chloride reacts with chloride ion  
from molten NaCl to form the BeCl4

2− ion, in which the Be 
atom attains an octet. Show the net ionic reaction with Lewis 
structures. 

10.24 Despite many attempts, the perbromate ion ( BrO4
−) was not 

prepared in the laboratory until about 1970. (In fact, articles were 
published explaining theoretically why it could never be pre-
pared!) Draw a Lewis structure for BrO4

− in which all atoms have 
lowest formal charges.

10.25 Cryolite (Na3AlF6) is an indispensable component in the 
electrochemical production of aluminum. Draw a Lewis structure 
for the AlF6

3− ion.

10.26 Phosgene is a colorless, highly toxic gas that was employed 
against troops in World War I and is used today as a key reactant 
in organic syntheses. From the following resonance structures, 
select the one with the lowest formal charges: 

C

O

ClCl
C

O

ClCl
A B

C

O

ClCl
C
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Valence-Shell Electron-Pair Repulsion (VSEPR) Theory
(Sample Problems 10.6 to 10.8)

Concept Review Questions
10.27 If you know the formula of a molecule or an ion, what is the 
first step in predicting its shape?

10.28 In what situation is the name of the molecular shape the 
same as the name of the electron-group arrangement? 

10.29 Which of the following numbers of electron groups can 
give rise to a bent (V-shaped) molecule: two, three, four, five, six? 
Draw an example for each case, showing the shape classification 
(AXmEn) and the ideal bond angle.

10.30 Name all the molecular shapes that have a tetrahedral 
 electron-group arrangement. 

10.31 Consider the following molecular shapes. (a) Which has 
the most electron pairs (both bonding and lone pairs) around 
the central atom? (b) Which has the most lone pairs around the 
central atom? (c) Do any have only bonding pairs around the 
central atom?

A B C D

10.32 Use wedge-bond perspective drawings (if necessary) to 
sketch the atom positions in a general molecule of formula (not 
shape class) AXn that has each of the following shapes: 
(a) V-shaped (b) trigonal planar (c) trigonal bipyramidal
(d) T-shaped (e) trigonal pyramidal (f) square pyramidal

10.33 What would you expect to be the electron-group arrange-
ment around atom A in each of the following cases? For each ar-
rangement, give the ideal bond angle and the direction of any 
expected deviation:

A

A XX X

AX

X

X

(a) (b) (c) A XX(d)

AX(e)
X

X
(f)X

XX

A

X

X

Skill-Building Exercises (grouped in similar pairs)
10.34 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following: 
(a) O3  (b) H3O+  (c) NF3

10.35 Determine the electron-group arrangement, molecular shape, 
and ideal bond angle(s) for each of the following:
(a) SO4

2−  (b) NO2
−  (c) PH3

10.36 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following: 
(a) CO3

2−  (b) SO2  (c) CF4

10.37 Determine the electron-group arrangement, molecular 
shape, and ideal bond angle(s) for each of the following:
(a) SO3  (b) N2O (N is central)  (c) CH2Cl2

10.12 Draw Lewis structures of all the important resonance forms 
of (a) HCO2

− (H is attached to C); (b) HBrO4 (HOBrO3).

10.13 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) IF5; (b) AlH4

−. 

10.14 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) OCS; (b) NO.

10.15 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) CN−; (b) ClO−. 

10.16 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) ClF2

+; (b) ClNO.

10.17 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) BrO3

−; (b) SO3
2−. 

10.18 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) AsO4

3−; (b) ClO2
−.

10.19 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BH3  (b) AsF4

−  (c) SeCl4

10.20 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) PF6

−  (b) ClO3  (c) H3PO3 (one PH bond)

10.21 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BrF3  (b) ICl2

−  (c) BeF2

10.22 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) O3

−  (b) XeF2  (c) SbF4
−

Problems in Context
10.23 Molten beryllium chloride reacts with chloride ion  
from molten NaCl to form the BeCl4

2− ion, in which the Be 
atom attains an octet. Show the net ionic reaction with Lewis 
structures. 

10.24 Despite many attempts, the perbromate ion ( BrO4
−) was not 

prepared in the laboratory until about 1970. (In fact, articles were 
published explaining theoretically why it could never be pre-
pared!) Draw a Lewis structure for BrO4

− in which all atoms have 
lowest formal charges.

10.25 Cryolite (Na3AlF6) is an indispensable component in the 
electrochemical production of aluminum. Draw a Lewis structure 
for the AlF6

3− ion.

10.26 Phosgene is a colorless, highly toxic gas that was employed 
against troops in World War I and is used today as a key reactant 
in organic syntheses. From the following resonance structures, 
select the one with the lowest formal charges: 

C

O

ClCl
C

O

ClCl
A B

C

O

ClCl
C
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(a) The radius of a helium atom is 3.1×10−11 m; the radius of its 
nucleus is 2.5×10−15 m. What fraction of the spherical atomic 
volume is occupied by the nucleus (V of a sphere = 4

3πr3)?
(b) The mass of a helium-4 atom is 6.64648×10−24 g, and each of 
its two electrons has a mass of 9.10939×10−28 g. What fraction of 
this atom’s mass is contributed by its nucleus?

2.122 From the following ions (with their radii in pm), choose the 
pair that forms the strongest ionic bond and the pair that forms the 
weakest:
Ion: Mg2+ K+ Rb+ Ba2+ Cl− O2− I−

Radius: 72 138 152 135 181 140 220

2.123 Give the molecular mass of each compound depicted below, 
and provide a correct name for any that are named incorrectly.

monosulfur
dichloride

Br F

S

Cl

P

Cl

NO
dinitride
pentoxide

boron
fluoride

phosphorus
trichloride

(a) (b)

(d)(c)

2.124 Polyatomic ions are named by patterns that apply to ele-
ments in a given group. Using the periodic table and Table 2.5, 
give the name of each of the following: (a) SeO4

2−; (b) AsO3−
4 ; 

(c) BrO−
2; (d) HSeO−

4; (e) TeO2−
3 .

2.125 Ammonium dihydrogen phosphate, formed from the reac-
tion of phosphoric acid with ammonia, is used as a crop fertilizer 
as well as a component of some fire extinguishers. (a) What are 
the mass percentages of N and P in the compound? (b) How much 
ammonia is incorporated into 100. g of the compound?

2.126 Nitrogen forms more oxides than any other element. The 
percents by mass of N in three different nitrogen oxides are  
(I) 46.69%, (II) 36.85%, and (III) 25.94%. For each compound, 
determine (a) the simplest whole-number ratio of N to O and  
(b) the number of grams of oxygen per 1.00 g of nitrogen. 

2.127 The number of atoms in 1 dm3 of aluminum is nearly the 
same as the number of atoms in 1 dm3 of lead, but the densities of 
these metals are very different (see Table 1.5). Explain.

2.128 You are working in the laboratory, preparing sodium chlo-
ride. Consider the following results for three preparations of the 
compound:

Case 1: 39.34 g Na + 60.66 g Cl2 ⟶ 100.00 g NaCl
Case 2: 39.34 g Na + 70.00 g Cl2 ⟶

100.00 g NaCl + 9.34 g Cl2

Case 3: 50.00 g Na + 50.00 g Cl2 ⟶
82.43 g NaCl + 17.57 g Na

Explain these results in terms of the laws of conservation of mass 
and definite composition.

2.129 Scenes A–I depict various types of matter on the atomic 
scale. Choose the correct scene(s) for each of the following:
(a) A mixture that fills its container
(b) A substance that cannot be broken down into simpler ones
(c) An element with a very high resistance to flow

(d) A homogeneous mixture
(e) An element that conforms to the walls of its container and 
displays an upper surface
(f) A gas consisting of diatomic particles
(g) A gas that can be broken down into simpler substances
(h) A substance with a 2/1 ratio of its component atoms
(i) Matter that can be separated into its component substances by 
physical means
(j) A heterogeneous mixture
(k) Matter that obeys the law of definite composition

FD E

A B C

G H I

2.130 The seven most abundant ions in seawater make up more 
than 99% by mass of the dissolved compounds. Here are their 
abundances in units of mg ion/kg seawater: chloride 18,980; so-
dium 10,560; sulfate 2650; magnesium 1270; calcium 400; potas-
sium 380; hydrogen carbonate 140. 
(a) What is the mass % of each ion in seawater?
(b) What percent of the total mass of ions is represented by  
sodium ions?
(c) How does the total mass % of alkaline earth metal ions com-
pare with the total mass % of alkali metal ions?
(d) Which make up the larger mass fraction of dissolved compo-
nents, anions or cations?

2.131 The following scenes represent a mixture of two mona-
tomic gases undergoing a reaction when heated. Which mass 
law(s) is (are) illustrated by this change?

450 K273 K 650 K
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2.102 Correct each of the following names:
(a) CBr4 is carbon bromide.
(b) IF7 is iodine pentafluoride.
(c) NO is nitrogen(I) oxide.

2.103 Write the formula of each compound, and determine its 
molecular (formula) mass: (a) ammonium sulfate; (b) sodium 
 dihydrogen phosphate; (c) potassium bicarbonate. 
2.104 Write the formula of each compound, and determine its 
molecular (formula) mass: (a) sodium dichromate; (b) ammonium 
perchlorate; (c) magnesium nitrite trihydrate.

2.105 Calculate the molecular (formula) mass of each com-
pound: (a) dinitrogen pentoxide; (b) lead(II) nitrate; (c) calcium 
peroxide.

2.106 Calculate the molecular (formula) mass of each compound: 
(a) iron(II) acetate tetrahydrate; (b) sulfur tetrachloride; (c) potas-
sium permanganate.

2.107 Give the number of atoms of the specified element in a 
formula unit of each of the following compounds, and calculate 
the molecular (formula) mass:
(a) Oxygen in aluminum sulfate, Al2(SO4)3
(b) Hydrogen in ammonium hydrogen phosphate, (NH4)2HPO4
(c) Oxygen in the mineral azurite, Cu3(OH)2(CO3)2

2.108 Give the number of atoms of the specified element in a 
formula unit of each of the following compounds, and calculate 
the molecular (formula) mass:
(a) Hydrogen in ammonium benzoate, C6H5COONH4
(b) Nitrogen in hydrazinium sulfate, N2H6SO4
(c) Oxygen in the mineral leadhillite, Pb4SO4(CO3)2(OH)2

2.109 Give the formula, name, and molecular mass of the follow-
ing molecules:

S

O

H

C

(a) (b)

2.110 Give the formula, name, and molecular mass of the follow-
ing molecules:

N O

H

C

(a) (b)

Problems in Context
2.111 Before the use of systematic names, many compounds had 
common names. Give the systematic name for each of the following:
(a) Blue vitriol, CuSO4·5H2O
(b) Slaked lime, Ca(OH)2
(c) Oil of vitriol, H2SO4
(d) Washing soda, Na2CO3
(e) Muriatic acid, HCl
(f ) Epsom salt, MgSO4·7H2O

(g) Chalk, CaCO3
(h) Dry ice, CO2
(i) Baking soda, NaHCO3
(j) Lye, NaOH

2.112 Each circle contains a representation of a binary compound. 
Determine its name, formula, and molecular (formula) mass.

nitrogen

chlorine

oxygen

(a) (b)

Mixtures: Classification and Separation
Concept Review Questions

2.113 In what main way is separating the components of a mix-
ture different from separating the components of a compound? 

2.114 What is the difference between a homogeneous and a het-
erogeneous mixture?

2.115 Is a solution a homogeneous or a heterogeneous mixture? 
Give an example of an aqueous solution.

Skill-Building Exercises (grouped in similar pairs)

2.116 Classify each of the following as a compound, a homoge-
neous mixture, or a heterogeneous mixture: (a) distilled water; 
(b) gasoline; (c) beach sand; (d) wine; (e) air.

2.117 Classify each of the following as a compound, a homoge-
neous mixture, or a heterogeneous mixture: (a) orange juice; 
(b) vegetable soup; (c) cement; (d) calcium sulfate; (e) tea.

Problems in Context

2.118 Name the technique(s) and briefly describe the procedure 
for separating each of the following mixtures into pure components: 
(a) table salt and pepper; (b) drinking water contaminated with 
soot; (c) crushed ice and crushed glass; (d) table sugar dissolved 
in ethanol; (e) two pigments (chlorophyll a and chlorophyll  
b) from spinach leaves.

2.119 Which separation method is operating in each of the follow-
ing procedures? 
(a) Pouring a mixture of cooked pasta and boiling water into a 
colander
(b) Removing colored impurities from raw sugar to make refined 
sugar

2.120 A quality-control laboratory analyzes a product mixture 
 using gas-liquid chromatography. The separation of components 
is more than adequate, but the process takes too long. Suggest two 
ways, other than changing the stationary phase, to shorten the 
analysis time.

Comprehensive Problems
2.121 Helium is the lightest noble gas and the second most abun-
dant element (after hydrogen) in the universe.
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OPTIMIZING THE TEXT
The modern chemistry student’s learning experience is changing dramatically. To address the changes that students face, 
a modern text partnered with a suite of robust digital tools must continue to evolve. With each edition, students and 
instructors alike have been involved in refining this text. From one-on-one interviews, focus groups, and symposia, as 
well as extensive chapter reviews and class tests, we learned that everyone praises the pioneering molecular art; the 
stepwise problem-solving approach; the abundant mix of qualitative, quantitative, and applied end-of-chapter problems; 
and the rigorous and student-friendly coverage of mainstream topics.

Global Changes to Every Chapter
Our revision for the ninth edition focused on continued optimization of the text. To aid us in this process, we were able 
to use data from literally thousands of student responses to questions in SmartBook probes, the adaptive learning system 
that assesses student knowledge of course content. The data, such as average time spent answering each question and 
the percentage of students who correctly answered the question on the first attempt, revealed the learning objectives that 
students found particularly difficult. We utilized several approaches to present these difficult concepts in a clear, straight-
forward way in the ninth edition of Chemistry: The Molecular Nature of Matter and Change.

Making the concepts clearer through digital learn-
ing resources. Students will be able to access digital 
learning resources throughout this text’s SmartBook. 
These learning resources present summaries of concepts 
and worked examples, including videos of chemistry 
instructors solving problems or modeling concepts that 
students can view over and over again. Thus, students 
can have an “office hour” moment at any time. 

Student Hot Spots
We are very pleased to incorporate real student data 
points and input, derived from thousands of our Smart-
Book users, to help guide our revision. SmartBook Heat 
Maps provided a quick visual snapshot of usage of por-
tions of the text and the relative difficulty students expe-
rienced in mastering the content. With these data, we 
were able to both hone our text content when needed and, for particularly challenging concepts, point students to the learning 
resource videos that can elucidate and reinforce those concepts. You’ll see these marginal features throughout the text. Students 
should log into Connect and view the resources through our SmartBook.

Applying ideas with enhanced problems throughout the chapters. The much admired four-part problem-solving 
format (plan, solution, check, follow-up) is retained in the ninth edition, in both data-based and molecular-scene Sample 
Problems. Two Follow-up Problems are included with each sample problem, as well as a list of Similar Problems within 
the end-of-chapter problem set. Brief Solutions for all of the follow-up problems appear at the end of each chapter (rather 
than providing just a numerical answer in a distant end-of-book appendix, as is typical). The ninth edition has over 250 
sample problems and over 500 follow-up problems. In many chapters, several sample and follow-up problems (and their 
brief solutions) were revised in this edition with two goals in mind. We sought to provide students with a variety of 
problems that would clearly elucidate concepts and demonstrate problem-solving techniques, while giving students the 
opportunity to be challenged and gain competence. We also included more intermediate steps in the solutions to both 
sample and follow-up problems so that students could more easily follow the solutions.

Re-learning ideas with annotated illustrations. The innovative three-level figures and other art that raised the bar for 
molecular visualization in chemistry textbooks is still present. Several existing figures have been revised and several new 
ones added to create an even better teaching tool. We continue to streamline figure legends by placing their content into 
clarifying annotations with the figures themselves.
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Solution Finding the mass (kg) of uranium in 102 kg of pitchblende:

 Mass (kg) of uranium = mass (kg) of pitchblende ×
mass (kg) of uranium in pitchblende

mass (kg) of pitchblende

 = 102 kg pitchblende ×
71.4 kg uranium

84.2 kg pitchblende
= 86.5 kg uranium

Converting the mass of uranium from kg to g:

Mass (g) of uranium = 86.5 kg uranium × 
1000 g
 1 kg

 =  8.65×104 g uranium

Finding the mass (in kg) of oxygen in 102 kg of pitchblende:
Mass (kg) of oxygen = mass (kg) of pitchblende − mass (kg) of uranium

= 102 kg − 86.5 kg = 15.5 kg oxygen
Converting the mass of oxygen from kg to g:

Mass (g) of oxygen = 15.5 kg oxygen × 
1000 g
 1 kg

= 1.55×104 g oxygen

Check The analysis showed that most of the mass of pitchblende is due to uranium, so 
the large mass of uranium makes sense. Rounding off to check the math gives

∼100 kg pitchblende × 
70
85

 = 82 kg uranium

FOLLOW-UP PROBLEMS
2.2A The mineral “fool’s gold” does not contain any gold; instead, it is a compound 
composed only of the elements iron and sulfur. A 110.0-g sample of fool’s gold 
contains 51.2 g of iron. What mass of sulfur is in a sample of fool’s gold that 
contains 86.2 g of iron?
2.2B Silver bromide is the light-sensitive compound coated onto black-and-white film. 
A 26.8-g sample contains 15.4 g of silver, with bromine as the only other element. How 
many grams of each element are on a roll of film that contains 3.57 g of silver bromide?
SOME SIMILAR PROBLEMS 2.22–2.25

Multiple Proportions
It’s quite common for the same two elements to form more than one compound—sulfur 
and fluorine do this, as do phosphorus and chlorine and many other pairs of elements. 
The third mass law we consider applies in these cases: 

∙ Law of multiple proportions: if elements A and B react to form two compounds, 
the different masses of B that combine with a fixed mass of A can be expressed as 
a ratio of small whole numbers. 

Consider two compounds of carbon and oxygen; let’s call them carbon oxides I and 
II. These compounds have very different properties: the density of carbon oxide I is 
1.25 g/L, whereas that of II is 1.98 g/L; I is poisonous and flammable, but II is not. 
Mass analysis shows that

Carbon oxide I is 57.1 mass % oxygen and 42.9 mass % carbon
Carbon oxide II is 72.7 mass % oxygen and 27.3 mass % carbon

To demonstrate the phenomenon of multiple proportions, we use the mass percents 
of oxygen and of carbon to find their masses in a given mass, say 100 g, of each com-
pound. Then we divide the mass of oxygen by the mass of carbon in each compound 
to obtain the mass of oxygen that combines with a fixed mass of carbon:

 Carbon Oxide I Carbon Oxide II

g oxygen/100 g compound  57.1 72.7
g carbon/100 g compound  42.9 27.3
 57.1 = 1.33 72.7 = 2.66g oxygen/g carbon 42.9 27.3

Student data indicate that you may struggle with 
using mass fraction to calculate the mass of an 
element in a compound. Access the eBook to 
view an additional Learning Resource video  
on this topic.

Student Hot Spot
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∙ Chapter 12 includes a rewritten section on phase changes, 
a new discussion on intermolecular forces and boiling 
points, a revision to a figure that helps students determine 
the type of intermolecular forces in a sample, and updated 
discussions in the advanced material section on LEDs, 
plastic recycling, 3-D printing, and nanomedicine.

∙ Chapter 13 incorporates a new video on freezing point 
depression calculations, a new graphical figure that depicts 
Henry’s law for several gases and connects gas solubility 
with molar mass and the strength of dispersion forces, a 
revised figure on the types of intermolecular forces in 
solution, and revised sample and follow-up problems on 
predicting charge density.

∙ Chapter 14 has two revised figures, one showing silicates 
and the other showing crystals of a noble gas compound, and 
an updated discussion, with new figures, on carbon allotropes.

∙ Chapter 15 includes a new example and new art to aid in 
naming organic compounds and new videos on naming 
alkanes, understanding optical isomers, and recognizing 
functional groups.

∙ Chapter 16 has a newly organized section on rate laws 
and half-lives for first-, second-, and zero-order reactions, 
an addition to a sample problem that requires the calcula-
tion of rate from rate constant and concentration data, a 
new follow-up problem on first-order integrated rate law 
calculations, and several new or revised end-of-chapter 
problems. The section on collision theory, activation 
energy, and transition state theory was heavily revised for 
better flow and clarity. There is a new Student Hot Spot 
resource on solving first-order integrated rate law problems.

∙ Chapter 17 has several revised and new sample problems 
and follow-up problems, including a new sample problem on 
the van’t Hoff equation for calculating the change in equilib-
rium constant with a change in temperature, several new end-
of-chapter problems, and three new Student Hot Spot 
resources explaining equilibrium and Le Châtelier’s princi-
ple. There are two revised figures on equilibrium position.

∙ Chapter 18 has a significant rearrangement of topics, 
introducing conjugate acid-base pairs and the pH scale 
before the introduction of Ka; two new figures, one describ-
ing the relationship between [H+] and [OH–] and the other 
summarizing Ka and Kb calculations; three revised sample 
and follow-up problems; and two new videos to help stu-
dents understand acidic metal cations and how to predict 
the pH of salts with amphiprotic anions.

∙ Chapter 19 includes three new tables, one summarizing 
buffer pH relative to buffer concentration ratio and the other 
two summarizing pH calculations for titrations of weak 
acids and weak bases. There are new Student Hot Spot 
resources on the calculation of buffer pH, the preparation of 
a buffer of a specific pH, and the calculation of pH during 
acid-base titrations.

∙ Chapter 20 includes new tables with values of entropy and 
Gibbs free energy for selected substances, a revised sample 
problem on the calculation of the standard entropy of reac-
tion, and a new video on spontaneity and temperature.

Mastering the content with abundant end-of-chapter 
problem sets. New problems were added to several chapter 
problem sets, providing students and teachers with abundant 
choices in a wide range of difficulty and real-life scenarios. 
The problem sets are more extensive than in most other texts.

Content Changes to Individual Chapters
In addition to the general optimization of concept explana-
tions and problem solutions throughout the text, specific 
improvements were made to most chapters:

∙ Chapter 1 has a revised discussion of significant figures to 
make this important topic clearer, two revised sample prob-
lems on significant figures and rounding in calculations, and 
a new follow-up problem on using density in calculations.

∙ Chapter 2 includes an improved discussion on mass spec-
trometry, isotopic composition, and atomic mass; five new 
figures to aid in nomenclature of compounds, including a 
summary nomenclature decision tree; and two new end-of-
chapter problems on naming compounds.

∙ Chapter 3 now features two new problem-solving Student 
Hot Spot resources on mass/moles/molecules conversions 
and on determination of a molecular formula; and revisions 
to four sample problems on stoichiometry.

∙ Chapter 4 has been reorganized for better flow and clarity; 
there is a new table on the types of electrolytes, a revised 
sample problem on the stoichiometry of ions in solution, and 
a revised sample problem on writing acid-base reactions.

∙ Chapter 5 now has three improved sample problems and 
two revised figures on gas laws.

∙ Chapter 6 includes heavily revised sample problems on 
heat, temperature change, and specific heat capacity; Hess’s 
Law; and calculations with heat of formation values. The 
Chemical Connections on energy has been updated.

∙ Chapter 7 includes a new video to help students under-
stand line spectra, three revised figures, and a revised 
sample problem on quantum numbers.

∙ Chapter 8 incorporates a new figure to illustrate penetra-
tion and shielding of 4s vs. 3d orbitals, four revised figures 
(on electron spin, orbital filling, element reactivity, and 
acid-base behavior of oxides), a heavily revised discussion 
on using the periodic table to write electron configura-
tions, and a new treatment of the concept of assigning 
quantum numbers to electrons.

∙ Chapter 9 has a revised treatment of the Born-Haber cycle 
and a clearer discussion of the three types of bonding.

∙ Chapter 10 includes two new videos: one video demon-
strates the process of drawing Lewis structures and one 
explains the process of determining molecular geometry. 
There are also improvements in the text explanation about 
drawing Lewis structures, on assigning and using formal 
charges, and on determining molecular polarity.

∙ Chapter 11 has a revised sample problem and a new 
 follow-up problem on types of orbitals, a revised follow-up 
problem on hybrid orbitals, and an improved discussion on 
hybridization and bond angles in molecules.
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role of intermolecular forces in biomolecular structure 
(12), the chemistry of polysaccharides, proteins, and 
nucleic acids (including protein synthesis, DNA replica-
tion, and DNA sequencing) (15), as well as introductions 
to enzyme catalysis (16), biochemical pathways (17), and 
trace elements in protein function (23).

For courses that stress engineering applications of 
physical chemistry topics, Chapters 16 through 21 cover 
kinetics (16), equilibrium in gases (17), acids and bases 
(18), and aqueous ionic systems (19) and entropy and free 
energy (20) as they apply to electrochemical systems (21), 
all in preparation for coverage of the elements in geochem-
ical cycles, metallurgy, and industry in Chapter 22.

McGraw-Hill Create® is another way to implement 
innovative chapter presentation. With Create, you can 
easily rearrange chapters, combine material from other 
content sources, and quickly upload content you have 
written, such as your course syllabus or teaching notes. 
Find the content you need in Create by searching through 
thousands of leading McGraw-Hill textbooks. Create 
even allows you to personalize your book’s appearance 
by selecting the cover and adding your name, school, and 
course information. Order a Create book, and you’ll 
receive a complimentary print review copy in 3–5 busi-
ness days or a complimentary electronic review copy 
(eComp) via e-mail in minutes. Go to www.mcgrawhill-
create.com today and register to experience how McGraw-
Hill Create empowers you to teach your students your 
way. http://create.mheducation.com

Tegrity in Connect is a tool that makes class time available 
24/7 by automatically capturing every lecture. With a sim-
ple one-click start-and-stop process, you capture all com-
puter screens and corresponding audio in a format that is 
easy to search, frame by frame. Students can replay any 
part of any class with easy-to-use, browser-based viewing 
on a PC, Mac, iPod, or other mobile device. 

Educators know that the more students can see, hear, 
and experience class resources, the better they learn. 
In fact, studies prove it. Tegrity’s unique search feature 
helps students efficiently find what they need, when 
they need it, across an entire semester of class record-
ings. Help turn your students’ study time into learning 
moments immediately supported by your lecture. With 
Tegrity, you also increase intent listening and class 
participation by easing students’ concerns about note-
taking. Using Tegrity in Connect will make it more 
likely you will see students’ faces, not the tops of their 
heads.

∙ Chapter 21 incorporates a more useful example of balanc-
ing a redox reaction in acidic solution and a new Student 
Hot Spot resource that illustrates the balancing method, 
new art to explain the function of a salt bridge, a new 
follow-problem on the relationship between cell potential 
and equilibrium constant, and an updated discussion on 
batteries.

∙ Chapter 23 has a revised section on nomenclature of coor-
dination compounds, including a revised sample problem 
on nomenclature; new art on the color of complex ions; 
and new videos on coordination number, optical isomers, 
and low-spin vs. high-spin complex ions.

∙ Chapter 24 includes a new table on stability of isotopes, a 
new sample problem on writing transmutation reactions, an 
updated table on radiation exposure, and updated discussions 
on PET scans and on fusion.

Innovative Topic and Chapter Presentation
Although the topic sequence coincides with that used in 
most mainstream courses, built-in flexibility allows a wide 
range of differing course structures:

For courses that follow their own topic sequence, the 
general presentation, with its many section and subsection 
breaks and bulleted lists, allows topics to be rearranged, 
or even deleted, with minimal loss of continuity.

For courses that present several chapters, or topics 
within chapters, in different orders:

∙ Redox balancing by the half-reaction method is covered 
with electrochemistry in Chapter 21, but it can easily 
be taught with Chapter 4.

∙ Gases (Chapter 5) can be covered in sequence to explore 
the mathematical modeling of physical behavior or, with 
no loss of continuity, just before liquids and solids (Chap-
ter 12) to show the effects of intermolecular forces on the 
three states of matter.

For courses that use an atoms-first approach for some 
of the material, Chapters 7 through 13 move smoothly 
from quantum theory (7) through electron configuration 
(8), bonding models (9), molecular shape (10), VB and 
MO bonding theories (11), intermolecular forces in liquids 
and solids (12), and solutions (13). Immediate applications 
of these concepts appear in the discussions of periodic 
patterns in main-group chemistry (Chapter 14) and in the 
survey of organic chemistry (Chapter 15). Some instruc-
tors have also brought forward the coverage of transition 
elements and coordination compounds (23) as further 
applications of bonding concepts. (Of course, Chapters 14, 
15, and 23 can just as easily remain in their more tradi-
tional placement later in the course.)

For courses that emphasize biological/medical applica-
tions, many chapters highlight these topics, including the 
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ALEKS® Creates a Personalized and  
Dynamic Learning Path
ALEKS® creates an optimized path with an ongoing cycle of 
learning and assessment, celebrating small wins along the 
way with positive real-time feedback. Rooted in research  
and analytics, ALEKS® improves student outcomes by 
fostering better preparation, increased motivation and 
knowledge retention.

*visit bit.ly/whatmakesALEKSunique to learn more about the 
science behind the most powerful adaptive learning tool  
in education!

Preparation & Retention
The more prepared your students are, the more effective 
your instruction is. Because ALEKS® understands the 
prerequisite skills necessary for mastery, students are 
better prepared when a topic is presented to them. 
ALEKS® provides personalized practice and guides 
students to what they need to learn next to achieve 
mastery. ALEKS® improves knowledge and student 
retention through periodic knowledge checks and 
personalized learning paths. This cycle of learning and 
assessment ensures that students remember topics they 
have learned, are better prepared for exams, and are 
ready to learn new content as they continue into their 
next course.

Create More Lightbulb Moments.

® Every student has different needs and enters your 
course with varied levels of preparation. Regardless 
of background, ALEKS® pinpoints what students 
already know, what they don’t and, most importantly, 
what they’re ready to learn next. Optimize your class 
engagement by aligning your course objectives to 
ALEKS® topics and layer on our textbook as an 
additional resource for students.
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